
Proceedings of the 2020 Conference on Empirical Methods in Natural Language Processing, pages 2107–2117,
November 16–20, 2020. c©2020 Association for Computational Linguistics

2107

Enhancing Aspect Term Extraction with Soft Prototypes

Zhuang Chen, Tieyun Qian∗

School of Computer Science, Wuhan University, China
{zhchen18, qty}@whu.edu.cn

Abstract
Aspect term extraction (ATE) aims to extract
aspect terms from a review sentence that users
have expressed opinions on. Existing studies
mostly focus on designing neural sequence tag-
gers to extract linguistic features from the to-
ken level. However, since the aspect terms
and context words usually exhibit long-tail
distributions, these taggers often converge to
an inferior state without enough sample ex-
posure. In this paper, we propose to tackle
this problem by correlating words with each
other through soft prototypes. These proto-
types, generated by a soft retrieval process, can
introduce global knowledge from internal or
external data and serve as the supporting ev-
idence for discovering the aspect terms. Our
proposed model is a general framework and
can be combined with almost all sequence tag-
gers. Experiments on four SemEval datasets
show that our model boosts the performance
of three typical ATE methods by a large mar-
gin.

1 Introduction

Aspect term extraction (ATE) is a fundamental sub-
task in aspect-based sentiment analysis. Given a re-
view sentence, ATE aims to extract all aspect terms
that users have expressed opinions on. For exam-
ple, from the review “The Bombay style bhelpuri is
very palatable.”, ATE aims to extract “bhelpuri”.

ATE has been widely studied in the last twenty
years. Early researches are devoted to design rule-
based (Popescu and Etzioni, 2005) and feature
engineering-based (Li et al., 2010) methods. With
the development of deep learning techniques, re-
cent researches mostly regard ATE as a sequence
labeling task and focus on developing various types
of neural models (Liu et al., 2015; Xu et al., 2018;
Ma et al., 2019) to generate a tag sequence for the
review.

*Corresponding author.

(a) Aspect terms. (b) Context words.
Figure 1: The distributions of aspect terms and context
words in the training sets of four SemEval datasets.

Though achieving impressive progress, current
sequence taggers mentioned still face a serious chal-
lenge: the taggers may converge to an inferior state
due to the lack of samples for tail words. As shown
in Figure 1, about 80% aspect terms and context
words (i.e., non-aspect terms) appear no more than
five times in the commonly-used SemEval datasets.
Without enough sample exposure, neural models
can hardly achieve an optimal performance (He
et al., 2018; Chen and Qian, 2019).

To tackle this challenge, correlating samples
with each other may offer helping hands. For exam-
ple, if we correlate the rare aspect term “bhelpuri”
with a frequent one like “food”, there will be more
abundant samples for “bhelpuri” than ever. The
problem then becomes how to build such a token-
level correlation. Retrieving synonyms is an intu-
itive approach to this problem, but it has two lim-
itations. Firstly, synonyms only exist for a small
number of words in the vocabulary. This will make
the correlations incomplete. Though we can calcu-
late the nearest neighbors for a certain word based
on the pre-trained word embeddings, it is not guar-
anteed that they have a similar semantic meaning.
Secondly, in ATE, the existence of an aspect term
depends on whether there are opinions on it. That
is to say, we need to build a dynamic correlation for
a certain word based on its entire contexts rather
than the word itself. Indeed, if the retrieval is con-

局外人
Underline

局外人
Highlight

局外人
Highlight

2108

soft retrieval

input sample

soft prototype

This Delhi manner

The Bombay

food was

style very

pretty yummy

bhelpuri is palatable .

!

Figure 2: Process of the soft retrieval.

ducted based on an individual token, the above two
limitations always exist.

In this paper, we propose a soft retrieval method
to build the token-level correlation for both aspect
terms and context words. Rather than conducting
a hard retrieval for individual tokens, we turn to
retrieve the tokens’ counterparts according to their
contexts. As shown in Figure 2, after conducting
the soft retrieval, we can obtain a generated sample
strictly corresponds to the input sample in every
position. We name the generated sample “soft pro-
totype” since it is actually a simplified prototype
that can build a reference point for guiding the
tagging process for the input sample.

We resort to the language models (LMs) to im-
plement the soft retrieval and generate high-quality
soft prototypes. As a self-supervised task, language
modeling needs no extra annotations and can ab-
sorb data-specific global knowledge. Moreover,
LMs tend to generate frequent outputs (Li et al.,
2016), which exactly meets our needs for correlat-
ing a rare word in the input sample with a frequent
one in the soft prototype. Specifically, we first pre-
train bi-directional LMs using the given training
samples on ATE datasets. Alternatively, we can
take advantage of large-scale unlabeled data like
Yelp and Amazon reviews to pre-train LMs. Then,
after fixing the pre-trained LMs, we can infer each
token’s prototype according to its contexts for both
the training and testing samples.

We regard the generated soft prototypes as the
supporting evidence for tagging aspect terms, and
design a simple and effective gating mechanism
to fuse the knowledge embedded in both samples
before sending them to a sequence tagger. The
soft prototypes can be combined with almost all
existing sequence taggers. To demonstrate the ef-
fectiveness of our proposed model, we conduct
experiments on four SemEval datasets by adding
the generated soft prototypes on three existing se-
quence taggers. The results prove that our soft
prototypes significantly boost the performance of
their original counterparts.

2 Related Work

Aspect Term Extraction Early researches for
ATE mainly involve pre-defined rules (Hu and Liu,
2004; Popescu and Etzioni, 2005; Wu et al., 2009;
Qiu et al., 2011) and hand-craft features (Li et al.,
2010; Liu et al., 2012, 2013; Chen et al., 2014).
With the development of deep learning techniques,
neural methods have become the mainstream. ATE
can be viewed as either a supervised or an unsuper-
vised task. For unsupervised ATE, the commonly-
used neural methods are based on topic models (He
et al., 2017; Liao et al., 2019). For supervised ATE,
the researchers focus on developing various types
of neural sequence taggers (Liu et al., 2015; Wang
et al., 2016; Yin et al., 2016; Wang et al., 2017; Li
and Lam, 2017; Xu et al., 2018; Li et al., 2018; Ma
et al., 2019). A recent trend is towards the unified
framework (Wang et al., 2018; Li et al., 2019; Luo
et al., 2019; He et al., 2019; Hu et al., 2019; Chen
and Qian, 2020), where the interactive relations
between ATE, opinion term extraction (OTE), or
aspect-level sentiment classification (ASC) are ex-
ploited to enhance the overall performance. Xu
et al. (2019) post-train BERT on domain-specific
data to boost its sequence labeling performance. Li
et al. (2020) propose to generate additional datasets
for improving the performance of ATE.

In this paper, we focus on the supervised sce-
nario. Different from the aforementioned super-
vised models, we develop a novel model to enhance
ATE. By automatically generating and utilizing soft
prototypes, we correlate samples with each other,
which greatly enhances the learning process of se-
quence taggers. Moreover, the decoupling of soft
prototypes from taggers makes our model flexible
and general, i.e., it can be combined with almost
all neural sequence taggers.

Prototypes in Neural Networks The idea of
prototypes (or templates) originates from informa-
tion retrieval (IR) approaches for sentence match-
ing tasks like response generation (Ji et al., 2014;
Hu et al., 2014). They aim to retrieve a related sam-
ple from the dataset as the counterpart of the input
sample. More recently, several studies shed new
light in this domain by deeply fusing prototypes
with neural networks. Many of them use the task-
dependent metrics (Guu et al., 2018; Hashimoto
et al., 2018), common metrics such as Jaccard sim-
ilarity (Gu et al., 2018; Cao et al., 2018; Wu et al.,
2019), or existing tools like Lucene (Cao et al.,

局外人
Text
将生成的软原型作为标记方面术语的支持证据，并设计了一种简单有效的门控机制，将嵌入在两个样本中的知识融合在一起，然后将它们发送到序列标记器。

局外人
Text

局外人
Text
通过自动生成和利用软原型，我们将样本相互关联，大大增强了序列标记器的学习过程。 此外，软原型与标记器的解耦使我们的模型灵活和通用，即它可以与几乎所有的神经序列标记器相结合

2109

2018) to retrieve prototypes, and then input the pro-
totypes into a neural model for generating outputs.
Wang et al. (2019) follows another line, where the
prototype (the target words related to a source word
in machine translation) is generated using a pre-
trained Seq2Seq model.

The approach of generating words via LMs is
inspired by a recent study (Kobayashi, 2018). How-
ever, the method in Kobayashi (2018) is developed
for text classification and is not suitable for the
ATE task here. Concretely, their method randomly
replaces a small percentage (typically 10%) of orig-
inal training words with the generated ones and
then discard the original words. This operation may
work well for text classification tasks which only
require sentence-level information. For token-level
tasks like ATE, the original words are however nec-
essary for tagging each token correctly. Moreover,
the small percentage of replacement implies that
the generated knowledge cannot be fully incorpo-
rated into the new sample. In contrast, we generate
a prototype for each word in the sentence, and then
deeply fuse the original word with its correspond-
ing prototype to make good use of their embedded
knowledge for ATE.

To the best of our knowledge, we are the first to
introduce the retrieval method to handle the data
deficiency problem in ATE. To this end, we pro-
pose a new approach to generate and utilize soft
prototypes that can build the token-level correlation
for aspect terms and context words.

3 Methodology

In this section, we first illustrate the overall frame-
work for enhancing ATE with soft prototypes. We
then detail the generation and utilization of soft pro-
totypes. Lastly, we describe the objective function
and the training procedure.

3.1 The Overall SoftProto Framework

Aspect term extraction (ATE) aims to extract as-
pect terms from a review sentence that users have
expressed opinions on. Given a sentence S =
{w1, w2, ..., wn}, we formulate ATE as a sequence
labeling task that aims to predict a tag sequence
Y = {y1, y2, ..., yn}, i.e., learning the mapping
S → Y , where y ∈ {B, I,O} denotes the begin-
ning of, inside of, and outside of an aspect term.

To incorporate soft prototypes to ATE, we
slightly modify the traditional learning process.
Formally, rather than directly learning the map-

prototype
generatorw2

wn

w1

p2

pn

p1

f2

fn

f1

y2

yn

y1

sequence
tagger

gating
conditioner

...

input
words

soft
prototypes

fused
vectors

sequence
tags

Figure 3: The SoftProto framework for enhancing ATE
with soft prototypes.

ping from S to Y , we additionally introduce a soft
prototype P for each S and learn the new mapping
[S, P]→ Y . Given S, the soft prototype P is auto-
matically generated by a soft retrieval mechanism,
and can serve as the supporting evidence to dis-
cover the aspect terms. As shown in Figure 3, we
summarize the above processes into the SoftProto
framework that mainly consists of three modules:
• A prototype generator is used for conducting the

soft retrieval process and generating the corre-
sponding soft prototype P for S.
• A gating conditioner is used for merging S’s

representation and P into the fused vectors F.
• A sequence tagger is used for predicting the tag

sequence Y based on F.
Next, we will illustrate each module in detail.

3.2 Prototype Generator

To efficiently implement the soft retrieval and gen-
erate high-quality soft prototypes, we resort to the
language models (LMs) to build a prototype gen-
erator. Specifically, we first pre-train two LMs,
where

−−→
LM and

←−−
LM is the forward and backward

language model parameterized by
−−→
θLM and

←−−
θLM ,

respectively. Then we infer soft prototypes based
on the pre-trained LMs.

One can use either the ATE training set or other
unlabeled external data like Yelp reviews to pre-
train LMs, and we will examine the effects of these
two types of data in the experiments. The details
of pre-training LMs and inferring soft prototypes
are as follows.

Pre-training Language Models As shown in
Figure 4(a), given S, the forward

−−→
LM computes

the probability of S by modeling the probability of
token wi conditioned on the history (w1, .., wi−1):

prob(w1, ..., wn) =

n∏
i=1

prob(wi|w1, ..., wi−1). (1)

In the pre-training process,
−−→
LM tries to maximize

the log likelihood of the forward direction:
n∑

i=1

log prob(wi|w1, w2, ..., wi−1;
−−→
θLM). (2)

2110

The1 Bombay2 style3 bhelpuri4 is5 very6

palatable7

trainable

LMs

Bombay2 style3 bhelpuri4 is5 very6output:wi

input:w1: i-1

(a) Pre-training a forward language model.

fixed

LMs

Delhi2 manner3 food4 was5 pretty6 yummy7

input:w1: i-1

output:oi

The1 Bombay2 style3 bhelpuri4 is5 very6

(b) Inferring oracle words.

Figure 4: Generating soft prototypes with LMs.

Similarly, the backward
←−−
LM tries to maximize the

log likelihood of the backward direction:
n∑

i=1

log prob(wi|wi+1, wi+2, ..., wn;
←−−
θLM). (3)

After the pre-training process converges, we can
fix
−−→
θLM and

←−−
θLM , and infer a soft prototype P

conditioned on S,
−−→
θLM , and

←−−
θLM for each sample

in the training and testing sets in ATE1.

Generating Soft Prototypes After getting
−−→
θLM

and
←−−
θLM , we then infer the soft prototype P. We

still take the forward
−−→
LM as the example.

As shown in Figure 4(b), for generating the for-
ward prototype vector −→pi for word wi, we feed
the prefix sentence {w1, w2,, wi−1} to the fixed
−−→
LM and collect the output probability distribu-
tion prob(ovi |w1, w2, ..., wi−1;

−−→
θLM), where V is

the size of vocabulary and v ∈ [1, V] . To suppress
noise, we do not directly select the word o1i with
the largest output probability. Instead, we preserve
the words {o1i , o2i ,, oKi } with K-largest output
probabilities, and normalize their probabilities to
sum 1 as the weighted scores {s1i , s2i ,, sKi }. We
call the selected words as “oracle words” (Zhang
et al., 2019). Then we map these words with a pre-
trained embedding lookup table E and obtain their
word vectors {o1

i ,o
2
i ,,o

K
i }. Finally, we aggre-

gate the oracle words by their weighted scores to
calculate −→pi for word wi:

−→pi =

K∑
k=1

ok
i · ski . (4)

Similarly, we can calculate the backward prototype
vector←−pi . To consider the context information in
both directions, we use the average of −→pi and←−pi as
the final prototype vector pi for word wi. We then

1Note that the testing ATE samples are not used for pre-
training the LMs, thus there is no data leakage in this process.

regard the set of prototype vectors {p1,p2,,pn}
as the soft prototype P for the sentence S2.

3.3 Gating Conditioner

For better discovering the aspect terms, we need to
leverage the supporting evidence embedded in the
soft prototype P. Intuitively, we have two schemes
to incorporate the soft prototypes into ATE: inside
or outside the sequence tagger. We choose the
latter because we want to decouple the soft proto-
types from the sequence taggers, such that we can
make the prototypes suitable for all types of tag-
gers. Hence, we introduce an additional upstream
module named the gating conditioner to fuse the
soft prototype P with the original sentence S.

The soft prototype P provides two kinds of in-
formation : (1) P itself has embedded data-specific
knowledge that can serve as supporting evidence.
(2) P also helps to refine the original representa-
tion of S. Accordingly, the gating conditioner is
developed to conduct two types of operations on
P. We first map S = {w1, w2, ..., wn} with the pre-
trained embedding lookup table E and obtain the
corresponding word vectors X= {x1,x2, ...,xn}.
Then, we conduct two types of operations on X and
P to obtain the fused vectors F:

fi = σ(W (xi ⊕ pi) + b)� (xi ⊕ pi), (5)

where σ is the Sigmoid function, W and b are train-
able parameters, ⊕ and � denotes the concatena-
tion and element-wise multiplication operation, re-
spectively.

In Eq. 5, the concatenation of P and X makes
the representation more discriminative than be-
fore. Moreover, the gating mechanism can help
select the important dimensions and further refine
the representation. The generated fused vectors
F= {f1,f2, ...,fn} then act as the enhanced rep-
resentation for S = {w1, w2, ..., wn}.

3.4 Sequence Tagger

The sequence tagger aims to extract high-level se-
mantic features from the low-level tokens, and pre-
dicts a tag sequence Y for the review S based on
these features. In order to investigate the influence
of soft prototypes, we need to control variables
in SoftProto. Therefore, we choose three existing
sequence taggers as our basic models, including
BiLSTM (Liu et al., 2015), DECNN (Xu et al.,

2Since −→p1 and ←−pn are inferred based on the BOS token,
they are less informative than other prototype vectors. In
practice, we replace them with the pre-trained word vectors of
w1 and wn, respectively.

局外人
Highlight

局外人
Underline

局外人
Highlight

局外人
Underline

2111

2018), and Seq2Seq4ATE (Ma et al., 2019). Read-
ers can refer to the original paper for more details
or Section 4.2 for a quick glance. Please note that
the only difference between an original sequence
tagger and its variant enhanced by our proposed
SoftProto is the representation of S. In other words,
by comparing the performance of a sequence tag-
ger and its enhanced variant, we can observe that
how ATE benefits from soft prototypes.

For training SoftProto, we simply compute the
cross-entropy loss L:

L = −
∑n

i=1

∑J

j=1
ŷij · log(yij), (6)

where n is the length of S, J is the category of
labels, yi and ŷi are the predicted tags and ground
truth labels. We then train all parameters with back
propagation.

4 Experiments

4.1 Datasets and Settings

ATE Datasets To evaluate the effectiveness
of SoftProto for ATE tasks, we conduct exten-
sive experiments on four datasets from SemEval
2014 (Pontiki et al., 2014), 2015 (Pontiki et al.,
2015) and 2016 (Pontiki et al., 2016). These
datasets contain review sentences from the restau-
rant and laptop domains with annotated aspect
terms. All of them have a fixed train/test split, and
we further randomly hold out 150 training samples
as the validation set for tuning hyper-parameters.
The statistics of four ATE datasets are summarized
in Table 13.

Table 1: The statistics of ATE datasets.
Datasets Lap14 Res14 Res15 Res16

Type train test train test train test train test
Sentences 3045 800 3041 800 1315 685 2000 676
Aspects 2342 650 3686 1134 1209 547 1757 622

Details for Pre-training Language Models As
mentioned in section 3.2, we use two types of
data to pre-train the LMs: (1) The ATE training
sets. In this setting, we directly use the same train-
ing/validation samples of each SemEval dataset to
pre-train its own LMs. Hence, there are four groups
of pre-trained LMs (including

−−→
LM and

←−−
LM) for

four datasets, respectively. We denote this setting
as SoftProtoI (I for internal knowledge). (2) The
unlabeled external data. In this setting, we addition-
ally collect 100,000 training and 10,000 validation
samples from Yelp Review (Zhang et al., 2015)

3Our code and data are available at https://github.com/
NLPWM-WHU/SoftProto.

and Amazon Electronics (McAuley et al., 2015)
datasets, respectively. LMs pre-trained on Yelp
serve as the prototype generator when training and
evaluating SoftProto on {Res14, Res15, Res16}
datasets, while those pre-trained on Amazon are
used for the Lap14 dataset. We denote this setting
as SoftProtoE (E for external knowledge). For pre-
training the LMs, we adopt the Fairseq4 toolkit (Ott
et al., 2019) and the basic transformer decoder LM
architecture (Vaswani et al., 2017)5.

Parameter Settings The only hyperparameter in
our SoftProto is the number K of oracle words
when generating soft prototypes. We use a grid
search to select K in the range [1,10] based on
the validation performance, and consequently set
K={10, 7, 10, 7} for four datasets, respectively.
For other parameters, including the pre-trained
word embedding, epoch number, optimizer selec-
tion, learning rate, and batch size, we inherit the
default settings from the original papers (Liu et al.,
2015; Xu et al., 2018; Ma et al., 2019). Models
achieving the maximum F1-scores on the valida-
tion set are used for evaluation on the testing set.
We report the averaged F1 scores over 5 runs with
random initialization. We run all methods in a sin-
gle 2080Ti GPU.

4.2 Compared Methods
We choose two kinds of baselines. The first is
the SemEval winners for corresponding datasets.
IHS-RD (Chernyshevich, 2014), DLIREC (Toh
and Wang, 2014), EliXa (Vicente et al., 2015), and
NLANGP (Toh and Su, 2016) are the winners for
Lap14, Res14, Res15, and Res16 datasets, respec-
tively. The second is the recent deep learning-based
methods. RNCRF (Wang et al., 2016), MIN (Li
and Lam, 2017), CMLA (Wang et al., 2017), and
HAST (Li et al., 2018) are frequently-used neural
baselines. They all introduce the auxiliary opinion
term extraction (OTE) task and exploit the relation
between ATE and OTE.

In order to discern the impacts of soft prototypes
on pure ATE task, we do not choose the hybrid
models as the base taggers. Instead, we adapt Soft-
Proto to three pure sequence taggers, including
BiLSTM (Liu et al., 2015; Li et al., 2018) which is
an RNN-based sequence tagger including a vanilla

4https://github.com/pytorch/fairseq.
5In practice, we also tried a self-constructed single-layer

LSTM architecture and got a similar performance in language
modeling. Since the Fairseq toolkit has already integrated the
transformer architecture, we directly use it for convenience.

https://github.com/NLPWM-WHU/SoftProto
https://github.com/NLPWM-WHU/SoftProto
https://github.com/pytorch/fairseq

2112

Table 2: Comparison of different methods in F1-scores. Results for the first eight methods are taken from Li et al.
(2018), while other results are the averaged scores of 5 runs with random initialization. The best scores are in bold,
and the best baselines are underlined. The subscript denotes the improvement/decrease after enhancing an ATE
tagger with a certain method (e.g., BiLSTM + SoftProtoE vs. BiLSTM). * denotes the statistical significance
between the orginal methods and their enhanced counterparts at p < 0.05 level.

Model Lap14 Res14 Res15 Res16
IHS-RD 74.55 79.62 - -
DLIREC 73.78 84.01 - -
EliXa - - 70.04 -
NLANGP - - 67.12 72.34
RNCRF 78.42 84.93 67.74 69.72
MIN 77.58 - - 73.44
CMLA 77.80 85.29 70.73 72.77
HAST 79.52 85.61 71.46 73.61

Selected ATE taggers and their enhanced variants
BiLSTM 73.69 82.02 64.66 67.95
+ Synonym 74.34(+0.65) 81.93(−0.09) 65.33(+0.67) 68.49(+0.54)

+ Replacement 73.47(−0.22) 81.78(−0.24) 65.72(+1.06) 67.29(−0.66)

+ SoftProtoI 73.97(+0.28) 82.82(+0.80) 65.77(+1.11) 68.04(+0.09)

+ SoftProtoE 74.75∗
(+1.06) 84.27∗

(+2.25) 66.06(+1.40) 69.65(+1.70)

Seq2Seq4ATE 79.02 84.08 69.89 72.82
+ Synonym 79.21(+0.19) 84.34∗

(+0.26) 70.12(+0.23) 73.99∗
(+1.17)

+ Replacement 78.97(−0.05) 84.56(+0.48) 70.17(+0.28) 73.92(+1.10)

+ SoftProtoI 79.13(+0.11) 85.16∗
(+1.08) 71.92(+2.03) 74.80∗

(+1.98)

+ SoftProtoE 80.46∗
(+1.44) 87.38∗

(+3.30) 71.99(+2.10) 76.06∗
(+3.24)

DECNN 81.39 86.04 71.18 74.39
+ Synonym 81.93∗

(+0.54) 85.45(−0.59) 70.80(−0.38) 75.78∗
(+1.39)

+ Replacement 80.19∗
(−1.20) 85.54(−0.50) 72.08(+0.90) 74.96(+0.57)

+ SoftProtoI 82.67∗
(+1.28) 86.35(+0.31) 72.01∗

(+0.83) 75.88∗
(+1.49)

+ SoftProtoE 83.19∗
(+1.80) 87.39∗

(+1.35) 73.27∗
(+2.09) 76.98∗

(+2.59)

BiLSTM architecture, DECNN (Xu et al., 2018)
which is a CNN-based sequence tagger which uses
two types of pre-trained embeddings and stacked
convolutional layers to extract context features
for tagging aspect terms, and Seq2Seq4ATE (Ma
et al., 2019) which is an attention-based sequence
tagger and uses a modified encoder-decoder frame-
work to extract aspect terms.

We further compare SoftProto with two sim-
ple enhancing methods, namely Synonym and Re-
placement. For Synonym, we substitute the top-K
oracle words with top-K nearest synonyms mea-
sured by the cosine distance of word vectors while
keeping the other settings unchanged. For Replace-
ment, we use the prototype generated by our lan-
guage models, but replace the training words with
the method in Kobayashi (2018). The modified
samples are sent to the sequence tagger directly6.

4.3 Main Results
The comparison results for all methods are shown
in Table 2 . Obviously, SoftProto greatly boosts all
basic sequence taggers. For example, DECNN
achieves an overall best performance among

6We use a grid search to select the replacement probability
and present the best results. Prototype tokens are generated
using the LMs pre-trained on the Yelp/Amazon data.

baselines, while SoftProtoI and SoftProtoE fur-
ther achieve {1.28%,0.31%,0.83%,1.49%} and
{1.80%,1.35%, 2.09%,2.59%} absolute gains for
DECNN on four datasets, respectively. There even
exists an amazing 3.30% gain after incorporating
SoftProtoE to Seq2Seq4ATE on the Res14 dataset.
This strongly demonstrates the effectiveness of pro-
posed soft prototypes for the ATE task. By cor-
relating samples through the soft prototypes, the
training of sequence taggers can easily converge to
a better state than before.

We also find that the improvements brought
by the SoftProto are more remarkable on small
datasets (Res15 and Res16) than those on large
ones (Res14 and Lap14). This is because there are
not enough samples on small datasets to train a
well-performed sequence tagger, and the discov-
ery of aspect terms largely relies on the knowledge
embedded in the soft prototypes. Moreover, Soft-
ProtoE performs much better than SoftProtoI. The
reason is that the external unlabeled data from Yelp
and Amazon is much bigger and more informa-
tive than the original ATE datasets. Accordingly,
the pre-trained LMs in SoftProtoE contain more
knowledge than those in SoftProtoI and can gener-
ate more discriminative soft prototypes.

2113

The performances of Synonym and Replacement
are far from satisfactory, and they even result in
decreases in some cases. Synonym generates noisy
prototypes by only considering the individual to-
kens, and can hardly handle the unknown (UNK)
words. The ineffectiveness of Replacement lies in
two issues. Firstly, it simply replaces the original
words with the generated ones, which incurs infor-
mation loss. Secondly, the generated knowledge
cannot be fully utilized due to the small percentage
of replacement. The inferior results demonstrate
that these two methods are not qualified for enhanc-
ing the ATE task.

5 Analysis

5.1 Perplexities of Language Models

In this section, we present the perplexities of lan-
guage models pre-trained on different datasets. As
shown in Table 3, the perplexity is linearly related
to the size of datasets. The larger the dataset, the
lower the perplexity.

Table 3: Perplexities of pre-trained language models.
Source Dataset Forward LM Backward LM

Internal

Lap14 147.00 146.79
Res14 164.31 169.67
Res15 238.68 236.07
Res16 199.76 200.69

External Yelp 48.53 49.63
Amazon 56.45 57.16

Clearly, LMs trained on external Yelp/Amazon
datasets have much lower perplexities than original
SemEval datasets. Among the SemEval datasets,
Lap14 and Res14 have relatively more samples
than Res15 and Res16, resulting in relatively lower
perplexities. Moreover, language models in for-
ward and backward directions have no significant
differences in performance. We will release all pre-
trained language models in time for encouraging
further studies on soft prototypes.

5.2 Ablation Study

Without loss of generality, we choose two DECNN
+SoftProto models and conduct the ablation study
to investigate the effects of different modules in
SoftProto. We sequentially remove the forward
LM, the backward LM, the concatenation opera-
tion, and the gating operation to obtain four simpli-
fied variants.

As shown in Table 4, all variants have a per-
formance decrease of the F1-score. The results
demonstrate that : (1) Considering both directions

Table 4: Ablation study. The scores denote the perfor-
mance decreases of SoftProtoI/SoftProtoE after remov-
ing the component.

Lap14 Res14 Res15 Res16
-
−−→
LM 2.44 / 0.83 1.71 / 1.59 1.42 / 1.11 0.16 / 0.41

-
←−−
LM 1.56 / 0.24 0.24 / 0.78 1.31 / 1.22 0.66 / 0.17

- concat 1.65 / 2.07 0.14 / 1.94 0.28 / 0.25 1.00 / 1.04
- gate 2.48 / 1.44 0.04 / 1.31 2.97 / 0.07 2.99 / 2.78

in language modeling can generate better soft pro-
totypes. (2) Both kinds of conditioning operations
(i.e., gating and concatenation) can contribute to
the utilization of the soft prototypes.

5.3 Impacts of Oracle Words
In the prototype generator, the hyper-parameter
K controls how many oracle words are taken
into account when generating soft prototypes. To
investigate the impacts of the oracle words on
different datasets, we vary K in the range of
[1,10] stepped by 1, and present the results of two
DECNN+SoftProto models in Figure 5.

(a) +SoftProtoI. (b) +SoftProtoE.

Figure 5: F1-scores under different settings of K.

Generally, the F1-scores of DECNN have an
overall upward trend when more oracle words are
introduced. This is explainable since the oracle
words actually provide the data-specific knowledge
that can be aggregated into the soft prototypes.
Moreover, owing to the high confidence of lan-
guage models trained on Yelp/Amazon datasets,
the curves of SoftProtoE are smoother than those
of SoftProtoI. The reason is that language mod-
els with high perplexities almost inevitably output
noisy oracle words and bring about the high vari-
ance when generating soft prototypes.

5.4 Case Study
To have a close look, we further select six sam-
ples from the testing sets for a case study. Due to
the space limitation, we only present the results
of the best baseline DECNN and its two variants
enhanced by SoftProto in Table 5.

S1∼S2 are in similar circumstances. DECNN
only extracts a single word as the aspect term and

2114

Table 5: Case study. The left column presents the selected examples, and the words in red with brackets denote
individual aspect terms. The three columns on the right denote the extraction results of corresponding models.

Examples DECNN +SoftProtoI +SoftProtoE
S1.My favs here are the [Tacos Pastor] and the
[Tostada de Tinga] .

Tacos,
Tostada de Tinga 7

Tacos Pastor,
Tostada de Tinga

Tacos Pastor,
Tostada de Tinga

S2.Fine if you have a [touch screen] . screen 7 touch screen touch screen
S3.[Web surfuring] is smooth and seamless . Web 7 Web surfuring Web surfuring
S4.My one complaint is that there was no [internal CD drive] . CD drive 7 internal CD drive internal CD drive
S5.They are [served] on [Focacchia bread] and are to die for . served 7 served 7 served, Focacchia bread
S6.The [food] is great and they make a mean [bloody mary] . food 7 food 7 food, bloody mary

neglects the integrality of phrases. Since the aspect
phrases [Tacos Pastor] and [touch screen] have
not occurred on the corresponding training sets on
Res14 and Lap14 datasets, their linguistic features
are not strong enough to become aspect terms. In
contrast, SoftProto variants can make correct ex-
tractions. We go deep into the prototype generator
and investigate the oracle words generated by the
language models. For [Pastor], LMs introduce
words like [nachos, burrito, salsa, food]. And for
[touch], LMs introduce words like [DSLR, cable,
camera, projector]. Obviously, these oracle words
are strong indicative words for [Pastor] and [touch],
and hence SoftProto is able to tag them correctly.

S3 is another interesting example. Since [surfur-
ing] is an rare variant of [surfing], DECNN only
extracts [Web] as the aspect term. For SoftProto,
LMs introduce oracle words like [browsing, man-
agement, interface, search]. Owing to the knowl-
edge embedded in the oracle words, recognizing
[Web surfuring] as a complete aspect term becomes
much easier than before.

S4 shows another ability of SoftProto, i.e., judg-
ing whether an adjective is sentimental or descrip-
tive. [internal] is a descriptive adjective for [CD
drive] without polarity, and should be included
in the aspect term. DECNN regards [internal] as
an opinion word and neglects it. For SoftProto,
LMs condition [internal] with oracle words like
[AC, on/off, wire, cable]. The nominal information
contained in the soft prototype helps the sequence
tagger extract [internal] correctly.

S5 and S6 verify the superiority of SoftProtoE
over SoftProtoI. Since the perplexities of LMs in
SoftProtoI are much higher than those in SoftPro-
toE, the oracles words in SoftProtoI correspond-
ingly have lower qualities. For [Focacchia], Soft-
ProtoI introduces meaningless oracle words like
[the, a, my, our]. In contrast, SoftProtoE produces
[pumpkin, homemade, garlic, baked], which are
closely related with [Focacchia]. Similarly, for
[bloody mary], SoftProtoE introduces [garlic, mar-

tini] to [bloody] and [mojito, beer] to [mary], while
the oracle words generated by SoftProtoI are less
informative.

5.5 Performance on Tail Aspect Terms
To prove that SoftProto are indeed beneficial for
identifying the tail aspect terms, we keep the train-
ing sentences unchanged and only preserve the test-
ing sentences containing the tail aspect terms (ap-
pearing no more than 3 times in training sentences).
We present the performance of DECNN and its two
variants enhanced by SoftProto on these sentences
in Table 6. Clearly, SoftProto enhances the ability
of DECNN in recognizing the tail aspect terms by
a large margin.

Table 6: The performance of DECNN and its SoftProto
variants on recognizing the tail aspect terms.

Lap14 Res14 Res15 Res16
Tail Percentage 30.50 30.38 30.66 28.11
DECNN 74.37 77.61 70.00 70.68
+SoftProtoI 78.88 79.96 75.04 71.80
+SoftProtoE 79.85 82.22 76.80 70.93

5.6 Prototypes Generation with BERT
Since BERT (Devlin et al., 2019) is pre-trained as
a masked language model (MLM), we wonder if
it can serve as the prototype generator. Hence, we
regard the generation of prototypes as a cloze test.
We sequentially mask each word and collect the top-
K output words of the MLM as the oracle words.
We name this variant SoftProtoB. The setting of K
and the usage of the oracle words remain the same
as those in SoftProtoI and SoftProtoE, thus the only
difference among all these SoftProto variants is the
way of pre-training language models.

We conduct experiments on two pre-trained
BERT models, where SoftProtoB (BASE) is the
officially released BERT-Base-Uncased model, and
SoftProtoB (PT) is further post-trained on domain-
specific data and released by Xu et al. (2019). Since
both SoftProtoB and SoftProtoE make use of the
external data, they are fair competitors and we list
the results of these two variants in Table 7.

2115

Table 7: Comparison between two pre-trained BERT
models and one pre-trained traditional language model.

Lap14 Res14 Res15 Res16
DECNN 81.39 86.04 71.18 74.39
+SoftProtoB (BASE) 82.15 86.84 71.20 75.09
+SoftProtoB (PT) 82.30 87.70 72.69 76.43
+SoftProtoE 83.19 87.39 73.27 76.98

From the results in Table 7, we can see that
the BERT-based models are also qualified for gen-
erating the soft prototypes. In general, SoftPro-
toB (BASE) generates domain-independent oracle
words and achieves limited improvements over the
base model, while SoftProtoB (PT) can generate
domain-specific oracle words and achieves a com-
parable performance with SoftProtoE.

5.7 Analysis on Computational Cost
Since we use the pre-trained language models, the
cost for generating soft prototypes can almost be
ignored. To demonstrate that SoftProto does not
incur the high computational cost in utilizing soft
prototypes, we run three sequence taggers on the
Laptop 2014 dataset, and present the trainable pa-
rameter number and running time per epoch of each
method before and after introducing SoftProto in
Table 8.

Table 8: Computational cost of each method.
Parameter Number Runtime

BiLSTM 903,903 3s
+ SoftProto 1,263,903 3s

Seq2Seq4ATE 4,738,353 87s
+ SoftProto 5,638,953 91s

DECNN 1,394,435 2s
+ SoftProto 2,444,835 3s

From Table 8, we can conclude that SoftProto
is a lightweight framework and does not add much
cost on the original sequence taggers.

6 Conclusion

In this paper, we present a general SoftProto frame-
work to enhance the ATE task. Rather than de-
signing elaborated sequence taggers, we turn to
correlate samples with each other through soft pro-
totypes. For this purpose, we resort to the language
models for automatically generating soft prototypes
and then design a gating conditioner for utilizing
them. The performance of SoftProto can be further
improved after introducing the large-scale exter-
nal unlabeled data like Yelp and Amazon reviews.
Extensive experiments on four SemEval datasets
demonstrate that SoftProto greatly boosts the per-
formance of the typical ATE methods and intro-
duces small computational cost.

Acknowledgments

We thank the anonymous reviewers for their valu-
able comments. The work described in this pa-
per is supported by the NSFC projects (61572376,
91646206), and the 111 project (B07037).

References
Ziqiang Cao, Wenjie Li, Sujian Li, and Furu Wei. 2018.

Retrieve, rerank and rewrite: Soft template based
neural summarization. In ACL, pages 152–161.

Zhiyuan Chen, Arjun Mukherjee, and Bing Liu. 2014.
Aspect extraction with automated prior knowledge
learning. In ACL, pages 347–358.

Zhuang Chen and Tieyun Qian. 2019. Transfer capsule
network for aspect level sentiment classification. In
ACL, pages 547–556.

Zhuang Chen and Tieyun Qian. 2020. Relation-aware
collaborative learning for unified aspect-based senti-
ment analysis. In ACL, pages 3685–3694.

Maryna Chernyshevich. 2014. IHS r&d belarus: Cross-
domain extraction of product features using CRF. In
SemEval@COLING, pages 309–313.

Jacob Devlin, Ming-Wei Chang, Kenton Lee, and
Kristina Toutanova. 2019. BERT: pre-training of
deep bidirectional transformers for language under-
standing. In NAACL, pages 4171–4186.

Jiatao Gu, Yong Wang, Kyunghyun Cho, and Victor
O. K. Li. 2018. Search engine guided neural ma-
chine translation. In AAAI, pages 5133–5140.

Kelvin Guu, Tatsunori B. Hashimoto, Yonatan Oren,
and Percy Liang. 2018. Generating sentences by
editing prototypes. Trans. Assoc. Comput. Linguis-
tics, 6:437–450.

Tatsunori B. Hashimoto, Kelvin Guu, Yonatan Oren,
and Percy Liang. 2018. A retrieve-and-edit frame-
work for predicting structured outputs. In NIPS,
pages 10073–10083.

Ruidan He, Wee Sun Lee, Hwee Tou Ng, and Daniel
Dahlmeier. 2017. An unsupervised neural attention
model for aspect extraction. In ACL, pages 388–
397.

Ruidan He, Wee Sun Lee, Hwee Tou Ng, and Daniel
Dahlmeier. 2018. Exploiting document knowledge
for aspect-level sentiment classification. In ACL,
pages 579–585.

Ruidan He, Wee Sun Lee, Hwee Tou Ng, and Daniel
Dahlmeier. 2019. An interactive multi-task learning
network for end-to-end aspect-based sentiment anal-
ysis. In ACL, pages 504–515.

https://doi.org/10.18653/v1/P18-1015
https://doi.org/10.18653/v1/P18-1015
https://doi.org/10.3115/v1/p14-1033
https://doi.org/10.3115/v1/p14-1033
https://doi.org/10.18653/v1/p19-1052
https://doi.org/10.18653/v1/p19-1052
https://www.aclweb.org/anthology/2020.acl-main.340/
https://www.aclweb.org/anthology/2020.acl-main.340/
https://www.aclweb.org/anthology/2020.acl-main.340/
https://doi.org/10.3115/v1/s14-2051
https://doi.org/10.3115/v1/s14-2051
https://doi.org/10.18653/v1/n19-1423
https://doi.org/10.18653/v1/n19-1423
https://doi.org/10.18653/v1/n19-1423
https://www.aaai.org/ocs/index.php/AAAI/AAAI18/paper/view/17282
https://www.aaai.org/ocs/index.php/AAAI/AAAI18/paper/view/17282
https://transacl.org/ojs/index.php/tacl/article/view/1296
https://transacl.org/ojs/index.php/tacl/article/view/1296
http://papers.nips.cc/paper/8209-a-retrieve-and-edit-framework-for-predicting-structured-outputs
http://papers.nips.cc/paper/8209-a-retrieve-and-edit-framework-for-predicting-structured-outputs
https://doi.org/10.18653/v1/P17-1036
https://doi.org/10.18653/v1/P17-1036
https://doi.org/10.18653/v1/P18-2092
https://doi.org/10.18653/v1/P18-2092
https://doi.org/10.18653/v1/p19-1048
https://doi.org/10.18653/v1/p19-1048
https://doi.org/10.18653/v1/p19-1048

2116

Baotian Hu, Zhengdong Lu, Hang Li, and Qingcai
Chen. 2014. Convolutional neural network architec-
tures for matching natural language sentences. In
NeurIPS, pages 2042–2050.

Minghao Hu, Yuxing Peng, Zhen Huang, Dongsheng
Li, and Yiwei Lv. 2019. Open-domain targeted sen-
timent analysis via span-based extraction and classi-
fication. In ACL, pages 537–546.

Minqing Hu and Bing Liu. 2004. Mining and summa-
rizing customer reviews. In KDD, pages 168–177.

Zongcheng Ji, Zhengdong Lu, and Hang Li. 2014. An
information retrieval approach to short text conver-
sation. CoRR, abs/1408.6988.

Sosuke Kobayashi. 2018. Contextual augmentation:
Data augmentation by words with paradigmatic re-
lations. In NAACL, pages 452–457.

Fangtao Li, Chao Han, Minlie Huang, Xiaoyan
Zhu, Yingju Xia, Shu Zhang, and Hao Yu. 2010.
Structure-aware review mining and summarization.
In COLING, pages 653–661.

Jiwei Li, Michel Galley, Chris Brockett, Jianfeng Gao,
and Bill Dolan. 2016. A diversity-promoting ob-
jective function for neural conversation models. In
NAACL, pages 110–119.

Kun Li, Chengbo Chen, Xiaojun Quan, Qing Ling,
and Yan Song. 2020. Conditional augmentation
for aspect term extraction via masked sequence-to-
sequence generation. CoRR, abs/2004.14769.

Xin Li, Lidong Bing, Piji Li, and Wai Lam. 2019. A
unified model for opinion target extraction and target
sentiment prediction. In AAAI, pages 6714–6721.

Xin Li, Lidong Bing, Piji Li, Wai Lam, and Zhimou
Yang. 2018. Aspect term extraction with history
attention and selective transformation. In IJCAI,
pages 4194–4200.

Xin Li and Wai Lam. 2017. Deep multi-task learning
for aspect term extraction with memory interaction.
In EMNLP, pages 2886–2892.

Ming Liao, Jing Li, Haisong Zhang, Lingzhi Wang,
Xixin Wu, and Kam-Fai Wong. 2019. Coupling
global and local context for unsupervised aspect ex-
traction. In EMNLP, pages 4578–4588.

Kang Liu, Heng Li Xu, Yang Liu, and Jun Zhao. 2013.
Opinion target extraction using partially-supervised
word alignment model. In IJCAI, pages 2134–2140.

Kang Liu, Liheng Xu, and Jun Zhao. 2012. Opinion
target extraction using word-based translation model.
In EMNLP, pages 1346–1356.

Pengfei Liu, Shafiq R. Joty, and Helen M. Meng. 2015.
Fine-grained opinion mining with recurrent neural
networks and word embeddings. In EMNLP, pages
1433–1443.

Huaishao Luo, Tianrui Li, Bing Liu, and Junbo Zhang.
2019. DOER: dual cross-shared RNN for aspect
term-polarity co-extraction. In ACL, pages 591–
601.

Dehong Ma, Sujian Li, Fangzhao Wu, Xing Xie,
and Houfeng Wang. 2019. Exploring sequence-to-
sequence learning in aspect term extraction. In ACL,
pages 3538–3547.

Julian J. McAuley, Christopher Targett, Qinfeng Shi,
and Anton van den Hengel. 2015. Image-based rec-
ommendations on styles and substitutes. In SIGIR,
pages 43–52.

Myle Ott, Sergey Edunov, Alexei Baevski, Angela
Fan, Sam Gross, Nathan Ng, David Grangier, and
Michael Auli. 2019. fairseq: A fast, extensible
toolkit for sequence modeling. In NAACL-HLT,
pages 48–53.

Maria Pontiki, Dimitris Galanis, Haris Papageor-
giou, Ion Androutsopoulos, Suresh Manandhar, Mo-
hammad Al-Smadi, Mahmoud Al-Ayyoub, Yanyan
Zhao, Bing Qin, Orphée De Clercq, Véronique
Hoste, Marianna Apidianaki, Xavier Tannier, Na-
talia V. Loukachevitch, Evgeniy V. Kotelnikov,
Núria Bel, Salud Marı́a Jiménez Zafra, and Gülsen
Eryigit. 2016. Semeval-2016 task 5: Aspect based
sentiment analysis. In SemEval@NAACL-HLT,
pages 19–30.

Maria Pontiki, Dimitris Galanis, Haris Papageorgiou,
Suresh Manandhar, and Ion Androutsopoulos. 2015.
Semeval-2015 task 12: Aspect based sentiment anal-
ysis. In SemEval, pages 486–495.

Maria Pontiki, Dimitris Galanis, John Pavlopoulos,
Harris Papageorgiou, Ion Androutsopoulos, and
Suresh Manandhar. 2014. Semeval-2014 task 4: As-
pect based sentiment analysis. In SemEval, pages
27–35.

Ana-Maria Popescu and Oren Etzioni. 2005. Extract-
ing product features and opinions from reviews. In
EMNLP, pages 339–346.

Guang Qiu, Bing Liu, Jiajun Bu, and Chun Chen.
2011. Opinion word expansion and target extrac-
tion through double propagation. Computational
Linguistics, 37(1):9–27.

Zhiqiang Toh and Jian Su. 2016. NLANGP at
semeval-2016 task 5: Improving aspect based sen-
timent analysis using neural network features. In
SemEval@NAACL-HLT, pages 282–288.

Zhiqiang Toh and Wenting Wang. 2014. DLIREC: as-
pect term extraction and term polarity classification
system. In SemEval@COLING, pages 235–240.

Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob
Uszkoreit, Llion Jones, Aidan N. Gomez, Lukasz
Kaiser, and Illia Polosukhin. 2017. Attention is all
you need. In NIPS, pages 5998–6008.

http://papers.nips.cc/paper/5550-convolutional-neural-network-architectures-for-matching-natural-language-sentences
http://papers.nips.cc/paper/5550-convolutional-neural-network-architectures-for-matching-natural-language-sentences
https://doi.org/10.18653/v1/p19-1051
https://doi.org/10.18653/v1/p19-1051
https://doi.org/10.18653/v1/p19-1051
https://doi.org/10.1145/1014052.1014073
https://doi.org/10.1145/1014052.1014073
http://arxiv.org/abs/1408.6988
http://arxiv.org/abs/1408.6988
http://arxiv.org/abs/1408.6988
https://doi.org/10.18653/v1/n18-2072
https://doi.org/10.18653/v1/n18-2072
https://doi.org/10.18653/v1/n18-2072
https://www.aclweb.org/anthology/C10-1074/
https://doi.org/10.18653/v1/n16-1014
https://doi.org/10.18653/v1/n16-1014
http://arxiv.org/abs/2004.14769
http://arxiv.org/abs/2004.14769
http://arxiv.org/abs/2004.14769
https://doi.org/10.1609/aaai.v33i01.33016714
https://doi.org/10.1609/aaai.v33i01.33016714
https://doi.org/10.1609/aaai.v33i01.33016714
https://doi.org/10.24963/ijcai.2018/583
https://doi.org/10.24963/ijcai.2018/583
https://doi.org/10.18653/v1/d17-1310
https://doi.org/10.18653/v1/d17-1310
https://doi.org/10.18653/v1/D19-1465
https://doi.org/10.18653/v1/D19-1465
https://doi.org/10.18653/v1/D19-1465
http://www.aaai.org/ocs/index.php/IJCAI/IJCAI13/paper/view/6795
http://www.aaai.org/ocs/index.php/IJCAI/IJCAI13/paper/view/6795
https://www.aclweb.org/anthology/D12-1123/
https://www.aclweb.org/anthology/D12-1123/
https://doi.org/10.18653/v1/d15-1168
https://doi.org/10.18653/v1/d15-1168
https://doi.org/10.18653/v1/p19-1056
https://doi.org/10.18653/v1/p19-1056
https://doi.org/10.18653/v1/p19-1344
https://doi.org/10.18653/v1/p19-1344
https://doi.org/10.1145/2766462.2767755
https://doi.org/10.1145/2766462.2767755
https://doi.org/10.18653/v1/n19-4009
https://doi.org/10.18653/v1/n19-4009
https://doi.org/10.18653/v1/s16-1002
https://doi.org/10.18653/v1/s16-1002
https://doi.org/10.18653/v1/s15-2082
https://doi.org/10.18653/v1/s15-2082
https://doi.org/10.3115/v1/s14-2004
https://doi.org/10.3115/v1/s14-2004
https://www.aclweb.org/anthology/H05-1043/
https://www.aclweb.org/anthology/H05-1043/
https://doi.org/10.1162/coli_a_00034
https://doi.org/10.1162/coli_a_00034
https://doi.org/10.18653/v1/s16-1045
https://doi.org/10.18653/v1/s16-1045
https://doi.org/10.18653/v1/s16-1045
https://doi.org/10.3115/v1/s14-2038
https://doi.org/10.3115/v1/s14-2038
https://doi.org/10.3115/v1/s14-2038
http://papers.nips.cc/paper/7181-attention-is-all-you-need
http://papers.nips.cc/paper/7181-attention-is-all-you-need

2117

Iñaki San Vicente, Xabier Saralegi, and Rodrigo Agerri.
2015. Elixa: A modular and flexible ABSA plat-
form. In SemEval@NAACL-HLT, pages 748–752.

Feixiang Wang, Man Lan, and Wenting Wang. 2018.
Towards a one-stop solution to both aspect extrac-
tion and sentiment analysis tasks with neural multi-
task learning. In IJCNN, pages 1–8.

Wenya Wang, Sinno Jialin Pan, Daniel Dahlmeier, and
Xiaokui Xiao. 2016. Recursive neural conditional
random fields for aspect-based sentiment analysis.
In EMNLP, pages 616–626.

Wenya Wang, Sinno Jialin Pan, Daniel Dahlmeier, and
Xiaokui Xiao. 2017. Coupled multi-layer attentions
for co-extraction of aspect and opinion terms. In
AAAI, pages 3316–3322.

Yiren Wang, Yingce Xia, Fei Tian, Fei Gao, Tao Qin,
ChengXiang Zhai, and Tie-Yan Liu. 2019. Neural
machine translation with soft prototype. In NIPS,
pages 6313–6322.

Yu Wu, Furu Wei, Shaohan Huang, Yunli Wang, Zhou-
jun Li, and Ming Zhou. 2019. Response generation
by context-aware prototype editing. In AAAI, pages
7281–7288.

Yuanbin Wu, Qi Zhang, Xuanjing Huang, and Lide Wu.
2009. Phrase dependency parsing for opinion min-
ing. In EMNLP, pages 1533–1541.

Hu Xu, Bing Liu, Lei Shu, and Philip S. Yu. 2018. Dou-
ble embeddings and cnn-based sequence labeling for
aspect extraction. In ACL, pages 592–598.

Hu Xu, Bing Liu, Lei Shu, and Philip S. Yu. 2019.
BERT post-training for review reading compre-
hension and aspect-based sentiment analysis. In
NAACL, pages 2324–2335.

Yichun Yin, Furu Wei, Li Dong, Kaimeng Xu, Ming
Zhang, and Ming Zhou. 2016. Unsupervised word
and dependency path embeddings for aspect term ex-
traction. In IJCAI, pages 2979–2985.

Wen Zhang, Yang Feng, Fandong Meng, Di You, and
Qun Liu. 2019. Bridging the gap between train-
ing and inference for neural machine translation. In
ACL, pages 4334–4343.

Xiang Zhang, Junbo Jake Zhao, and Yann LeCun. 2015.
Character-level convolutional networks for text clas-
sification. In NIPS, pages 649–657.

https://doi.org/10.18653/v1/s15-2127
https://doi.org/10.18653/v1/s15-2127
https://doi.org/10.1109/IJCNN.2018.8489042
https://doi.org/10.1109/IJCNN.2018.8489042
https://doi.org/10.1109/IJCNN.2018.8489042
https://doi.org/10.18653/v1/d16-1059
https://doi.org/10.18653/v1/d16-1059
http://aaai.org/ocs/index.php/AAAI/AAAI17/paper/view/14441
http://aaai.org/ocs/index.php/AAAI/AAAI17/paper/view/14441
http://papers.nips.cc/paper/8861-neural-machine-translation-with-soft-prototype
http://papers.nips.cc/paper/8861-neural-machine-translation-with-soft-prototype
https://doi.org/10.1609/aaai.v33i01.33017281
https://doi.org/10.1609/aaai.v33i01.33017281
https://www.aclweb.org/anthology/D09-1159/
https://www.aclweb.org/anthology/D09-1159/
https://doi.org/10.18653/v1/P18-2094
https://doi.org/10.18653/v1/P18-2094
https://doi.org/10.18653/v1/P18-2094
https://doi.org/10.18653/v1/n19-1242
https://doi.org/10.18653/v1/n19-1242
http://www.ijcai.org/Abstract/16/423
http://www.ijcai.org/Abstract/16/423
http://www.ijcai.org/Abstract/16/423
https://doi.org/10.18653/v1/p19-1426
https://doi.org/10.18653/v1/p19-1426
http://papers.nips.cc/paper/5782-character-level-convolutional-networks-for-text-classification
http://papers.nips.cc/paper/5782-character-level-convolutional-networks-for-text-classification

